Deep Learning for Predicting Human Strategic Behavior

نویسندگان

  • Jason S. Hartford
  • James R. Wright
  • Kevin Leyton-Brown
چکیده

Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant’s cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that automatically performs cognitive modeling without relying on such expert knowledge. We introduce a novel architecture that allows a single network to generalize across different input and output dimensions by using matrix units rather than scalar units, and show that its performance significantly outperforms that of the previous state of the art, which relies on expert-constructed features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر آموزش راهبردهای خود تنظیمی بر رویکردهای یادگیری دانش آموزان اول دبیرستان

Abstract The present study was conducted to determine the effect of learning self-regulation strategies on surface, deep and strategic learning approaches of high school first grade female students in Yazd. The study method was pre-test and post-test design. For this purpose, a sample size of 57 subjects was selected by multistage cluster sampling method among high school first grade female ...

متن کامل

A Survey on Study Habits of Medical Students in Shiraz Medical School

Background: Study habits and skills are very important particularly in medical school which is characterized by heavy workload, heavy time commitments, and high stakes assessments. Students’ approach to learning, which includes study habits, has an important impact on both the excellence of the learning and their academic success. The aim of this study was to evaluate the study habits of Shiraz...

متن کامل

Detection of children's activities in smart home based on deep learning approach

 Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...

متن کامل

Detection of children's activities in smart home based on deep learning approach

 Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...

متن کامل

Learning and Predicting Dynamic Network Behavior with Graphical Multiagent Models

Factored models of multiagent systems address the complexity of joint behavior by exploiting locality in agent interactions. History-dependent graphical multiagent models (hGMMs) further capture dynamics by conditioning behavior on history. The hGMM framework also brings new elements of strategic reasoning and more expressive powers to modeling information diffusion over networks. We propose a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016